

Rate Design Fundamentals and Seattle City Light

Seattle City Council Energy and Environment Committee July 25, 2017

> Presented by Jim Lazar RAP Senior Advisor

Regulatory Assistance Project (RAP)

RAP is a global, non-profit team of experts focused on the long-term economic and environmental sustainability of the power sector.

We provide assistance to government officials on a broad range of energy and environmental issues.

Mostly assist state utility regulators, but Burbank and Austin are cities that have asked for our help.

Jim Lazar

- Economist
 - Consulting practice in rate design and resource planning beginning 1979.
 - Based in Olympia, Washington
 - RAP since 1998

Jim Lazar, Senior Advisor

Overview

- The Steps in Rate Design
 - Revenue Requirement
 - Cost Allocation Between Classes
 - Rate Design Within Classes
- Cost Allocation: Dividing the Pie
 - Embedded Costs
 - Marginal Costs
 - "The Public Power Dividend"
- Residential Rates

A Few Highlights From the RAP Publication Collection

Available for Free Download www.raponline.org

Energy solutions for a changing world

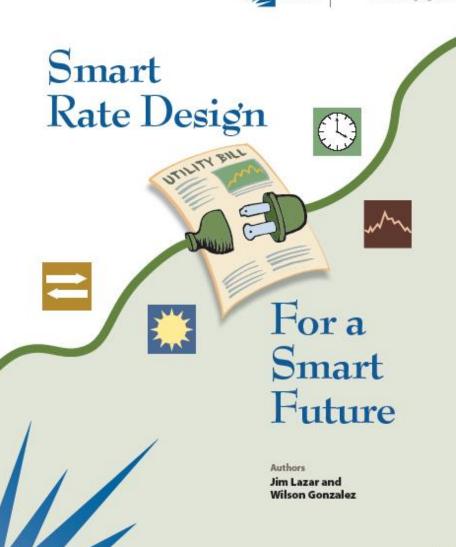
Energy solutions for a changing world

Electricity Regulation In the US: A Guide

SECOND EDITION

Author Jim Lazar, with RAP staff

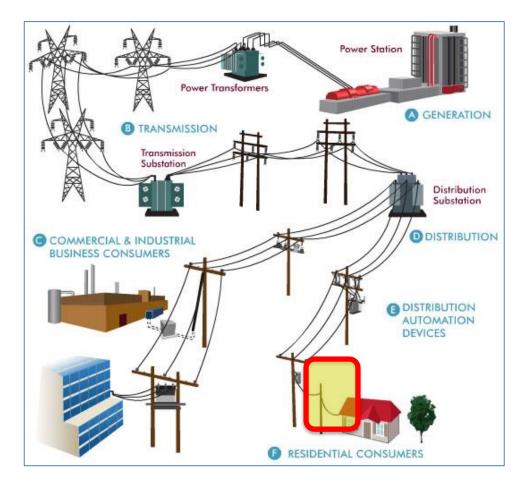
The basics of regulation.


Energy solutions for a changing world

July 2015

Smart Rate Design:

Rate design as though the future is important.


People DO Understand Rate Design

Three Guiding Principles for Rate Design

Principle #1:

A customer should be allowed to connect to the grid for no more than the cost of connecting to the grid.

Principle #2

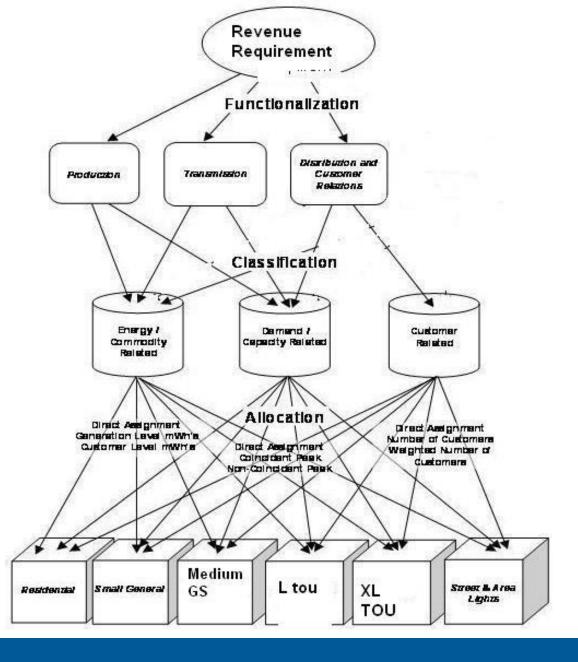
Customers should pay for the grid and power supply in proportion to **how much they use,** and when they use it.

Principle #2

Customers should pay for the grid and power supply in proportion to how much they use, and **when they use it.**

Principle #3

Customers delivering services to the grid should receive full and fair value -- no more and no less.


Smart Rate Design

Customer-Specific Charges

Customer Charge	\$/Month	\$ 3.00	
Transformer:	\$/kVA/Mo	\$ 1.00	

Bi-Directional Energy Charges				
Off-Peak	\$/kWh	\$ 0.08		
Mid-Peak	\$/kWh	\$ 0.12		
On-Peak	\$/kWh	\$ 0.18		
Critical Peak	\$/kWh	\$ 0.75		

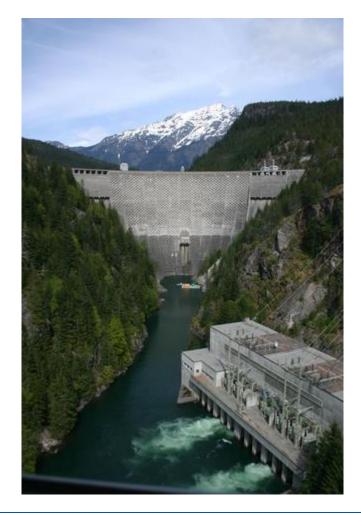
Cost Allocation

Energy solutions for a changing world

"Allocation of costs is not a matter for the slide rule. It involves judgment of a myriad of facts. It has no claim to an exact science."

Justice William O. Douglas U.S. Supreme Court Colorado Interstate Gas Co. v. Federal Power Commission, 324 US 581, 589 (1945)

Cost Allocation Framework


- Cost of Service Methods
 - Embedded Cost
 - Incremental Cost
 - Long-Run Marginal Cost
- Value of Service Methods
 - Compare to other utilities
- There are as many methods as there are analysts preparing studies.

Embedded Cost Methods Generation

- Peak Responsibility
 - Fixed Costs Classified as Demand or Customer
 - Variation: Average and Excess Demand
 - Takes account of seasonal variations
- Peak and Average Demand
 - Classifies some costs to energy
- Base-Intermediate-Peak
 - Assigns "baseload" system costs to all hours
- Energy-Weighted
 - Classifies most costs to energy

Generation

- Historical cost relatively cheap.
- Replacement cost much higher.
- ~40% of residential bill
- ~60% of industrial bill

Transmission

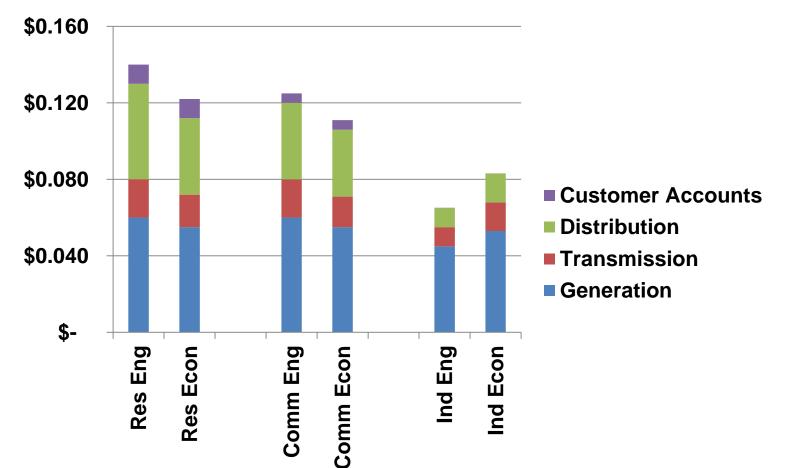
- Connects remote generating facilities to system.
- Is purpose "peak" related or "energy" related?

Distribution

- Built to deliver **energy**.
- Designed to carry peak **demand**.
- Connects to every **customer**.
- WHY was the system built in the first place?

Meters

Historical: used only for billing


Smart Meters: Used for conservation program design, peak load management, reliability services, and billing

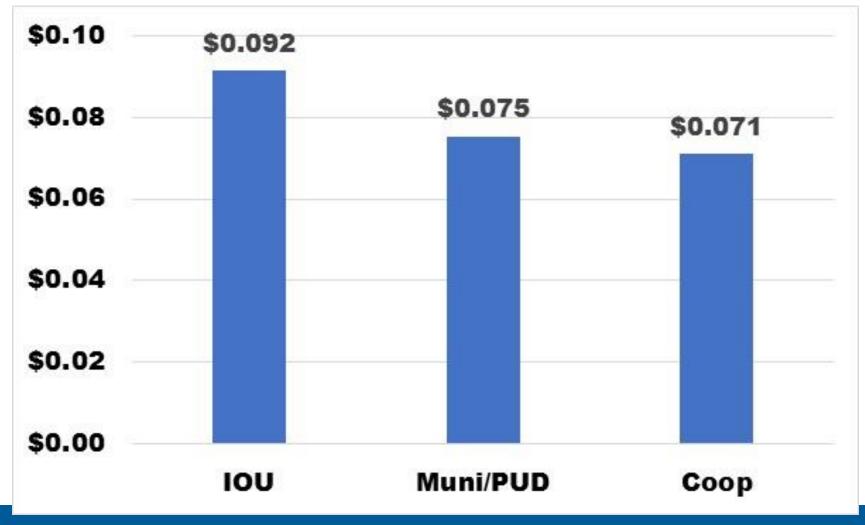
Engineering vs. Economic Approaches

	Engineering	Economic
Cost Category	Approach	Approach
Baseload Power Plants	Demand	~75% Energy
Other Power Plants	Demand	~50% Energy
Demand Response	Demand	Demand
Fuel / Purch. Power	Energy	Energy
Transmission	Demand	Mostly Energy
Substations	Demand	Demand
Poles, Wires, Xfmrs	Demand/Customer	Demand/Energy
		Demand / Energy /
Meters	Customer	Customer
Billing and Collection	Customer	Customer

Comparison of Results of Two Studies: Engineering vs. Economic

Marginal Cost Approaches

- Long-Run Marginal Costs: ~\$.15/kWh
 All costs are variable
 Full cost of system reproduction
- Short-Run Marginal Costs ~\$.04/kWh
 Existing Capital Facilities
 Fuel and variable labor costs only
- Intermediate Time Frames
- Mixed Time Frames


Controversy in Marginal Cost Analysis

- Mixed time horizons
 - Short-run cost for energy (dispatch)
 - Long-run cost for peaking capacity and distribution investments
- Reconciliation to Revenue Requirement

Value of Service Methods The "Public Power Dividend"

- Public power utilities are usually lower cost.
 - No shareholder profit
 - Lower cost of borrowing
 - Access to BPA preference power

Relative Rates: 2014 USEIA Data State of Washington

Energy solutions for a changing world

Seattle vs. PSE 2014 USEIA Data

					Seattle %
			Puge	et Sound	Lower than
	S	eattle	E	nergy	PSE
Residential	\$	0.087	\$	0.097	9.7%
Commercial	\$	0.075	\$	0.094	20.2%
Industrial	\$	0.064	\$	0.088	27.7%
All Customers	\$	0.078	\$	0.095	18.4%

Average Public Power Dividend: 18.4%

Bottom Line on Cost Allocation

- Many methods;
- "How" system is built vs.
 "Why" system is built results in very different conclusions.
- Multiple studies often considered.
- Is the "Public Power Dividend" being allocated equitably?
- There is no "right" way to compute this.

Rate Design

Energy solutions for a changing world

Rate Design is Full Of Inequities

- Single-Family vs. Multi-Family
- Urban vs. Suburban vs. Rural
- In-City vs. Outside City Limits
- Overhead vs. Underground
- New loads vs. existing loads
- Customer generation

How Has Seattle Addressed These?

Residential							
						Lake	
Rate Class	City	Shoreline	SeaTac	Tukwila	Burien	Forest	Suburban*
						Park	
Rate Code	RSC	RSH	RSE	RST	RSB	RSL	RSS
First Block (\$	\$0.0701	\$0.0722	\$0.0722	\$0.0719	\$0.0708	\$0.0708	\$0.0701
End-Block (\$	\$0.1288	\$0.1376	\$0.1376	\$0.1370	\$0.1351	\$0.1351	\$0.1288
Base Service	\$0,1621	\$0 1751	\$0.1751	\$0.1743	\$0.1718	\$0.1718	\$0.1621
Undergroundir	ng (\$/kWh]	\$0.0007			\$0.0037		
		\$0.0017			\$0.0013		
		\$0.0018					
		\$0.0005					
		\$0.0022					

Most Important Inequity To Study

- Single-Family vs. Multi-Family
- Urban vs. Suburban vs. Rural
- In-City vs. Outside City Limits
- Overhead vs. Underground
- New loads vs. existing loads
- Customer generation

Basic Residential Rate Forms

Three Basic Rate Designs					
Rate Designs	Flat Rate	Inclining Block Rate	Straight Fixed/ Variable Rate		
Customer Charge \$/month	\$5.00	\$5.00	\$30.00		
First 500 kWh/month	\$0.085	\$0.070	\$0.060		
Next 500 kWh/month	\$0.085	\$0.100	\$0.060		
Over 1000 kWh/month	\$0.085	\$0.140	\$0.060		

Energy solutions for a changing world

Fixed or "Customer" Charges

- Customer-specific costs
 - Billing
 - Collection
 - Customer Service
- Typically \$5 \$10/month
- California: Zero or very low
- Seattle: PURPA decision: Zero;

Now \$5/month

What Costs **Change** With Number of Customers?

- Poles?
- Underground Conduit?
- Conductors?
- Transformers?
- Meters?
- Billing and Collection?
- Customer Service?

The Controversy

• Inclusion of distribution costs in fixed charges.

"Costs such as meter reading, billing, the cost of meters and service drops, are properly attributable to the marginal cost of serving a single customer. The cost of a minimum sized system is not."

WUTC Docket U-89-2688

Illustrative Customer Charges (2016)

~	\sim 1		
	hongoge	ongogt	
Customer			

Pacific Gas & Electric Co.	CA	None
So Cal Edison	CA	\$0.87
Public Service E&G	NJ	\$2.43
Detroit Edison Co	MI	\$6.00
Virginia Electric Power	VA	\$7.00
Florida Power & Light Co	FL	\$7.24
Georgia Power Co	GA	\$9.00
Commonwealth Edison Co	IL	\$15.06
Consolidated Edison	NY	\$15.76

These utilities serve one in six Americans.

The Most Common Residential Rate Design: Inclining Block

- About 60% of World Population
 - All of China
 - Nearly all of India
 - All of Indonesia, Mexico, Brazil
 - Most of Central/Eastern Europe
 - Most of Western US

The Most Common Residential Rate Design: Inclining Block

- Goals include:
 - Allocation of low-cost resources (hydro)
 - Large use customers are "peak" oriented
 - Encouragement of conservation
 - Essential needs at affordable cost
 - Low-income benefits

Pacific Gas and Electric Company

 Total Energy Rates (\$ per kWh)
 \$0.19979 (I)

 Baseline Usage
 \$0.27612 (I)

 101% - 400% of Baseline
 \$0.40139

 High Usage Over 400% of Baseline
 \$0.40139

Delivery Minimum Bill Amount (\$ per meter per day)

\$0.32854

"Baseline" quantity determined by housing type and climate zone

No Fixed Customer Charge; \$10/month minimum bill

Issues With Inclining Block Rates

- Single-Family vs. Multi-Family
 Different Baseline Allowances
- Imperfect metric of peak orientation

 TOU rates more accurate

Impact of Different Rate Forms on Customer Usage

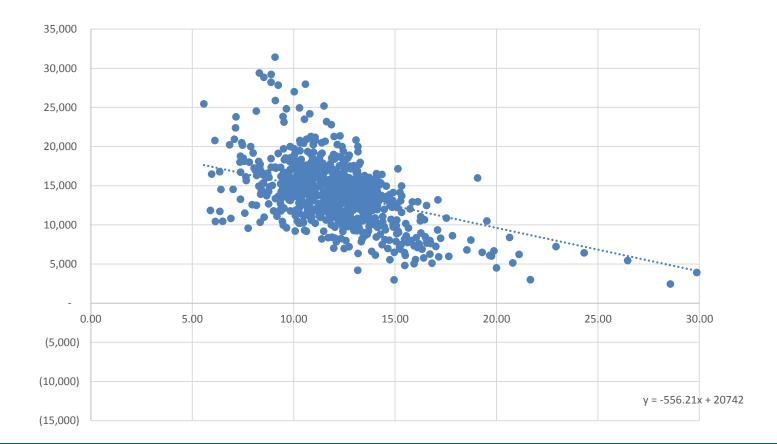
• Inclining Block:

~ 60% of customers representing ~80% of usage see the tail block as their marginal cost.

~80% of usage has an incentive to constrain usage.

~Typical savings are ~10% of consumption.

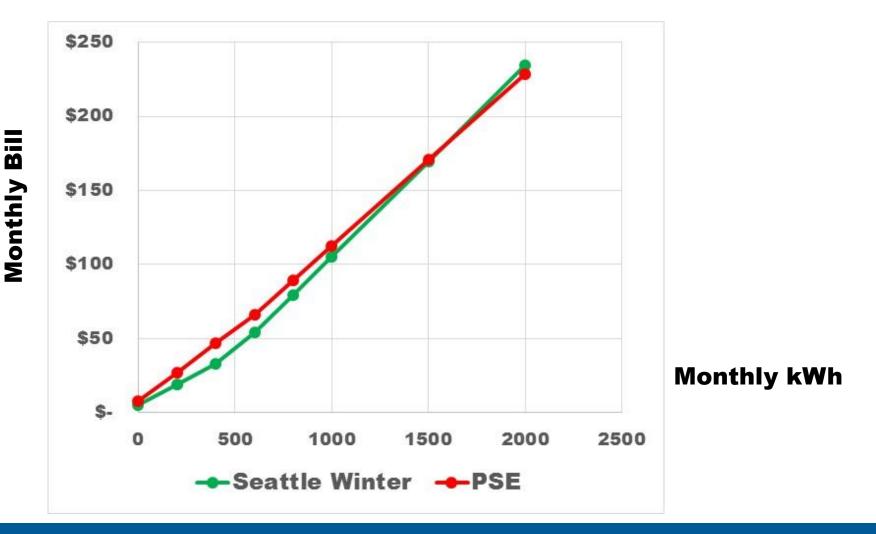
Impact of Different Rate Forms on Customer Usage

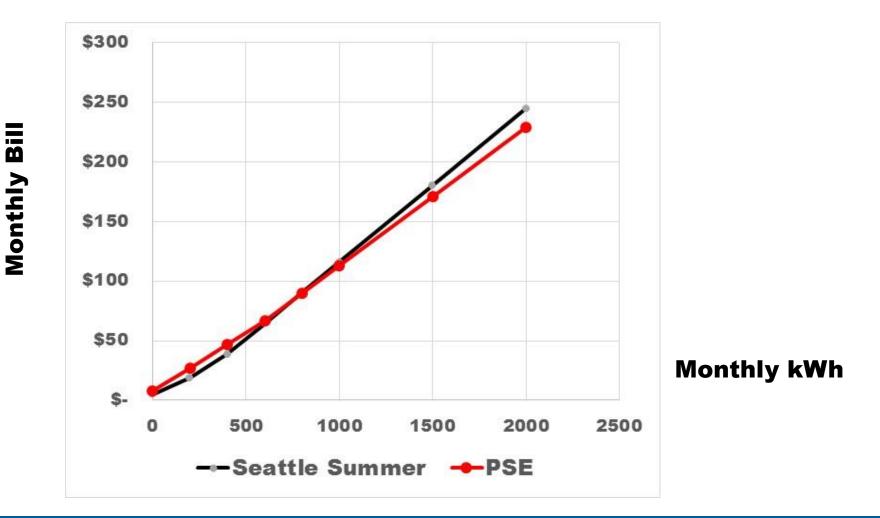

• High Fixed Charge

A \$10/month increase means a \$.015/kWh decrease = about 15%

A 15% decrease in the per-kWh charge yields a 3% to 10% increase in usage.

Relationship Between Average Rate and Average Usage


US Utility Rates and Average Usage


SCL vs. PSE Residential Rates

	Seattle		Seattle			
	Winter		Summer		PSE	
Customer Charge	\$	4.86	\$	4.86	\$	7.87
First 300 kWh	\$	0.070	\$	0.070	\$	0.098
Next 180 kWh	\$	0.070	\$	0.129	\$	0.098
Next 120 kwh	\$	0.129	\$	0.129	\$	0.098
Over 600 kWh	\$	0.129	\$	0.129	\$	0.116

The "Public Power Dividend" within the Residential Class

The "Public Power Dividend" within the Residential Class

Summary on Rate Design

- Low customer charge encourages low usage
- High fixed charge particularly unfair to apartment dwellers
- Inclining block rate reflects per-customer allocation of SCL hydro benefits and policy goal for essential service at an affordable cost.
- Rates Matter

People DO Understand Rate Design

About RAP

The Regulatory Assistance Project (RAP) is a global, non-profit team of expertsthatfocuses on the long-term economic and environmental sustainability of thepowersector. RAP has deep expertise in regulatory and market policies that:

- Promote economic efficiency
- Protect the environment
- Ensure system reliability
- Allocate system benefits fairly among all consumers

Learn more about RAP at www.raponline.org

Jim Lazar: jlazar@raponline.org 360-786-1822

The Regulatory Assistance Project (RAP)®

Beijing, China • Berlin, Germany • Brussels, Belgium • Montpelier, Vermont USA • New Delhi, India

www.raponline.org